Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113843, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401119

RESUMO

Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.


Assuntos
Planárias , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Planárias/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica
2.
Nature ; 608(7923): 586-592, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859170

RESUMO

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Aprendizagem , Vias Neurais , Neurotensina , Punição , Recompensa , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Cálcio/metabolismo , Sinais (Psicologia) , Plasticidade Neuronal , Neurotensina/metabolismo , Optogenética , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia
3.
Nat Commun ; 12(1): 224, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431851

RESUMO

The neural circuitry mediating taste has been mapped out from the periphery to the cortex, but genetic identity of taste-responsive neurons has remained elusive. Here, we describe a population of neurons in the gustatory region of the parabrachial nucleus that express the transcription factor Satb2 and project to taste-associated regions, including the gustatory thalamus and insular cortex. Using calcium imaging in awake, freely licking mice, we show that Satb2 neurons respond to the five basic taste modalities. Optogenetic activation of these neurons enhances taste preferences, whereas chronic inactivation decreases the magnitude of taste preferences in both brief- and long-access taste tests. Simultaneous inactivation of Satb2 and calcitonin gene-related peptide neurons in the PBN abolishes responses to aversive tastes. These data suggest that taste information in the parabrachial nucleus is conveyed by multiple populations of neurons, including both Satb2 and calcitonin gene-related peptide neurons.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Percepção Gustatória/fisiologia , Fatores de Transcrição/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Estimulação Física , Paladar/fisiologia
4.
Hippocampus ; 27(7): 743-758, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28241404

RESUMO

Distinguishing spatial contexts is likely essential for the well-known role of the hippocampus in episodic memory. We studied whether types of hippocampal neural organization thought to underlie context discrimination are impacted by learned economic considerations of choice behavior. Hippocampal place cells and theta activity were recorded as rats performed a maze-based probability discounting task that involved choosing between a small certain reward or a large probabilistic reward. Different spatial distributions of place fields were observed in response to changes in probability, the outcome of the rats' choice, and whether or not rats were free to make that choice. The degree to which the reward location was represented by place cells scaled with the expected probability of rewards. Theta power increased around the goal location also in proportion to the expected probability of signaled rewards. Furthermore, theta power dynamically varied as specific econometric information was obtained "on the fly" during task performance. Such an economic perspective of memory processing by hippocampal place cells expands our view of the nature of context memories retrieved by hippocampus during adaptive navigation.


Assuntos
Comportamento de Escolha/fisiologia , Hipocampo/fisiologia , Memória Episódica , Animais , Objetivos , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Long-Evans , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...